Section 4

1. Let's assume we want to design a biased coin for some surreptitious purpose. Fortunately, we have a machine that will create coins that land on heads with probability p and tails with probability $1-p$. How should we set p so that after flipping the coin $h+t$ times the outcome with maximum probability is getting h heads and t tails? As a reminder, the probability is

$$
\operatorname{Pr}[h \text { heads and } t \text { tails }]=\binom{h+t}{h} p^{h}(1-p)^{t}
$$

To determine the maximum, you will need use some calculus, i.e. take the derivative with respect to p, set it to 0 , and solve for p. Assume that $h \geq 1$ and $t \geq 1$ are fixed constants (in other words $\frac{d\left(p^{h}\right)}{d p}=h p^{h-1}$, etc). Hint: the answer you get for p should be fairly intuitive.
2. For any two (not necessarily independent) random variables X and Y, prove that

$$
\mathbf{E}[X+Y]=\mathbf{E}[X]+\mathbf{E}[Y] .
$$

As a reminder, the expected value is defined as

$$
\mathbf{E}[X]=\sum_{i=1}^{m} x_{i} \cdot \operatorname{Pr}\left[X=x_{i}\right] .
$$

where in this case X only takes values in $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq \mathbb{R}$.
3. Prove Markov's inequality: for any nonnegative random variable X, and for any $t \geq 0$,

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbf{E}[X]}{t}
$$

Then, show the equivalence to the sometimes more useful form

$$
\operatorname{Pr}[X \geq t \cdot \mathbf{E}[X]] \leq \frac{1}{t}
$$

Finally, invent a random variable and a distribution such that,

$$
\operatorname{Pr}[X \geq 10 \cdot \mathbf{E}[X]]=\frac{1}{10}
$$

4. Notice that for any function g and random variable X, the function $g(X)$ is also a random variable.
(a) Write down the formula for $\mathbf{E}[g(X)]$.
(b) Verify the natural equality:

$$
\mathbf{E}[g(X)]=\sum_{i=1}^{m} g\left(x_{i}\right) \operatorname{Pr}\left[X=x_{i}\right]
$$

(c) Come up with an example where you might care about $g(X)$ instead of just X.

